Package Structure in
MeVisLab - Documentation

Package Structure in
MeVisLab - Documentation

Package Structure in MeVisLab - Documentation

Table of Contents

1. Package Structure in MEVISLADiiiiiiiii e 5
1.1, What iS @ PACKAGE? .. .ot e 5
1.2. How Does MeVisLab Find PacCKages?cccuuiiiiiiiiiiiiiiiiie e 6
1.3. Who "KNows" ADOUL PACKAGES? .. .ceeeiiiiiiiiieieei ettt 6
2. Package COMPONEINTSiiiiitiieieii ettt ettt et e e et e et et e e et et e e e eete e e e e ete e e eennaaeeees 7
2.1. The mevi sl ab. prefs File .. e 7
2.2. The Package. def File ... e e 7
2.3, MOTUIES ...ttt et e aeae 7
P Yo 11| of T S PP UPPIN 8
2.5, TESICASES ...uuiitiiiii ettt ettt 8
2.6, PIOJECLS ...ttt 8
2.7 CIMIAKE ettt e e e 9
2.8. Configuration/INSTAIIETiiiiii et e e e e eenes 9
2.9, DOCUMEBNTALIONciiiiti ettt ettt ettt e ettt e e et e et e e e e e e ana e e e ennnns 9
2.00. LID/BIN ettt 10
2.11. SIE-PACKAGES ... eiiiti ettt ettt e e e e e e eae 10

List of Figures

1.1. Example for @ PACKAGE TIEEcociuiiiiiii ettt

Chapter 1. Package Structure in
MeVisLab

1.1. What is a Package?

A self-contained directory structure that consists of the following components:
* PackageG oup
* PackageNane
* Package. def
* bin
e Configuration

e Docunent ation

e lib
* Modul es
* Projects

* site-packages
* Sources

* Test Cases

Figure 1.1. Example for a Package Tree

4 MeVisLab s
bin

Configuration
Documentation
lib

Modules

Projects
Sources

4 MyPackageGroup
Development
4 General
bin

Configuration
Documentation
lib

Modules

TestCases

=] Package.def

Projects

Sources

m

TestCases
Networks

ToolRunnerReports

In this example, we have a PackageGroup named MyPackageG oup. Below it, two packages can be
found: Gener al and Devel oprent . Below each package, the typical folders can be found as shown for
the Gener al package. This example was generated with the Project Wizard in MeVisLab.

The folders Net wor ks and Tool Runner Reports in the figure above are on the same level as the
PackageGroup.

A PackageGroup can contain any number of packages, and of course there can be different
PackageGroups.

The Packageldentifier is defined by <PackageG oupNane>/ <PackageNane>, e.g., the MeVisLab
Standard package has the identifier MeVi sLab/ St andar d.

Package Structure in MeVisLab

1.2. How Does MeVisLab Find Packages?

MeVisLab searches in

 the packages directory in which MeVisLab was installed.

« the directories given in the PackagePat hs settings of nevi sl ab. prefs.
» the UserPackage path (as set in the MeVisLab Preferences dialog.

Scanning is always two levels deep, never deeper. If a package with the same Packageldentifier is
found more than once, the last package found will overwrite the earlier packages (in the order given
above). This way, your packages given by nevi sl ab. pref s file or your UserPackages can overwrite
installed packages.

‘ Note
You can check your effective package structure with the tool ToolRunner.

To compile a running MeVisLab, the packages ThirdParty, Foundation, | DE, and Standard are
required. All other packages are optional and not required for a fully working MeVisLab installation
(except that you will not have all the nice modules from the other packages).

1.3. Who "Knows" About Packages?

Packages are supported in the complete tool chain

« Chvake knows about the packages using the MeVisLab PackageScanner. It especially extends the
CMake modules path to the crmake directory found in any package.

 associated tools like ToolRunner know about packages.

e a MeVisLab module, accessible with «ctx in scripting, knows its package:
ct x. package() . packagel dentifier().

» MDL knows about packages using MLAB_PackageG oup_PackageNane variables.
» MLABPackageManager provides package information to Python scripting.
» wizards use packages as their target.

« installers know about packages (SW TCH_PACKAGE, etc.).

Chapter 2. Package Components
2.1. The nevi sl ab. prefs File

Settings {
PackagePat hs {
pat hRoot = MY_CHECKOUT PATH

pat h = FMEst abl e/ Foundat i on
pat h = FMEst abl e/ Gener al
pat h = FMEst abl e/ Rel ease

pat h = FMeEwor k/ Gener al

MeVi sLab/ St andar d
MeVi sLab/ Foundat i on

[/ path
[/ path

}

If you only need certain packages, enable/disable individual packages here by (un)commenting them.
MY_CHECKOUT_PATH has to be set to the root of the repository checkout (where the MeVi sLab and
FMEwor k/FMVEst abl e directories are located).

2.2. The Package. def File

The file Package. def is part of every package. It defines the position of the package in the
PackageGroup.

A typical example (excerpt from the MeVi sLab/ St andar d/ Package. def):

Package {
packageG oup = MeVi sLab
packageNane = Standard
owner = "MeVi s Medical Sol utions"
description = "Standard MeVi sLab Modul es"
}

‘ Note
In principle, the package structure is defined by Package. def . However, the implementation
of the package handling expects that all packages are below their PackageGroup.

2.3. Modules

The Mbdul es directory of a package contains all files that MeVisLab needs to know at runtime (*. def,
.script,.mab, *. py, etc.).

Shared Libraries (DLLS) are stored in a | i b directory.
A typical sub-structure is

s M

* Inventor

* Macros

Package Components

* Applications
* Resources

* Scripts

* Shared

* Wappers

In the Scri pt s directory, there is typically a pyt hon directory where you can store shared Python code.
The i nport statements of a module's Python code searches in this directory for the Python module
to import.

You can also set additional Python import paths in your module's Commands-section in the . scri pt file.

Conmands {
i mportPath = $(LOCAL)/ Pyt hon/
source = $(LOCAL)/ MyModul e. py
}

This sets an additional import path to a Pyt hon directory that is located relative to the module's definition.

You can have multiple i npor t Pat h statements in the Conmands-section.

2.4. Sources

The Sour ces directory of a package contains all source files that are used to build the shared libraries
or executables.

CMakeli st s. t xt files are used to specify DLL / executable projects.

Dependencies to other packages or projects are given in the MLAB_PACKAGE and CONFI G variables of
the profile.

A typical sub-structure is
e M

* |l nventor

* Shared

* Wappers

2.5. TestCases

The Test Cases directory contains the files for automatic tests that are executed with the
TestCaseManager. Please see the documentation for the TestCenter for how to define tests.

Usually there is a Functi onal Test s directory in this directory, which in turn contains directories that
match the directories from the Modules directory. This is purely optional, though.

2.6. Projects

In the Projects directory, you can store self-contained projects for an easy moving of projects.
MeVisLab searches in this directory for projects in a depth of two, so there can be top-level directories
containing a number of actual projects directories, and/or just the actual projects directories.

Each projects directory contains a Modul es, and optional Sour ces and Test Cases directories (similar
to the top-level directory structure of a MeVisLab package). The structure of the Modul es directory is

Package Components

similar to a directory of the top-level Modul es directory, i.e., it can contain mhel p, net wor ks, and Scri pt s
directories. It also contains the . def, . script, . m ab, and . py files of the module(s) that are defined
in a project.

Your project directory can contain the sub-directory Mbdul es/ Scri pt s/ pyt hon, but to import Python
modules from this directory, you have to use a MeVisLab-specific virtual package: If you, e.g., want to
import the file Pr oj ect s/ MyPr oj ect / Mbdul es/ Scri pt s/ pyt hon/ MyPyt honMbdul e. py in your Python
code, you have to use the import statement

i mport m ab_projects. M/Proj ect. MyPyt honModul e

i.e., you must prefix your import with nl ab_pr oj ect s. <pr oj ect - di r ect or y- nane>. For convenience
you probably would rather use

import m ab_projects. MyProj ect. MyPyt honModul e as M/Pyt honModul e

This also allows to import Python modules/packages from other projects.

’ Note
Nowadays the use of the Proj ects directory is recommended over the old directory
structure where the files for a certain module were scattered over the top-level Mdul es,
Sour ces, and Test Cases directories.

2.7. cmake

The cmake directory can contain <PackageG oup>_Set ti ngs. cmake and
<PackageG oup>_<PackageName>_Setti ngs. cmake files that define (compiler) settings for C++
projects of the given project.

‘ Note
These settings files don't need to reside in the package that they are intended for. You
just need to make sure that the package where they reside is always available when the
package for which they are applied is used.

You can also put files like <Pr oj ect Nanme>Conf i g. cmake here, which are needed for fi ndPackage()
calls in CMake files.

2.8. Configuration/Installer

The Configuration/Installer directory contains installer definition files (*. m i nstall and *. nli
files):

2.9. Documentation

The Docurnent at i on directory contains all package documentation, except for the individual module
documentation, which is part of the Mbdul es folder. The documentation can be either in Doxygen or
DocBook format.

» / Docunent at i on/ Sour ces contains the sources for building documentation.

» /Docunent ati on/ Publ i sh contains the result documentation (and is NOT checked into the
repository).

e /Docunent ation/ I ndex allows to configure additional entries on the MeVisLab Help Page
dynamically.

http://www.doxygen.org
http://www.docbook.org

Package Components

 the *. nl doc file format facilitates configuring and building of Doxygen and DocBook documents.

2.10. Lib/Bin

The | i b and bi n directory of a package contain the shared libraries and executables.

* |i b/ contains all shared libraries and static library files of the package.
* bi n/ contains all executables.
Profiles in sources are set up to copy result files to | i b/bi n.

If a DLL cannot be overwritten, it is copied to the | i b/ updat ed subdirectory and is moved to | i b/ on
the next MeVisLab startup. This way you can compile your project while MeVisLab is still running (which
would otherwise fail).

2.11. site-packages

The si t e- packages directory contains external Python packages that were installed with the PythonPip
module into a MeVisLab package. This directory — if it exists — is automatically added to the
PYTHONPATH.

10

http://www.doxygen.org
http://www.docbook.org

	Package Structure in MeVisLab - Documentation
	Table of Contents
	Chapter 1. Package Structure in MeVisLab
	1.1. What is a Package?
	1.2. How Does MeVisLab Find Packages?
	1.3. Who "Knows" About Packages?

	Chapter 2. Package Components
	2.1. The mevislab.prefs File
	2.2. The Package.def File
	2.3. Modules
	2.4. Sources
	2.5. TestCases
	2.6. Projects
	2.7. cmake
	2.8. Configuration/Installer
	2.9. Documentation
	2.10. Lib/Bin
	2.11. site-packages

