
1

Package Structure in
MeVisLab - Documentation

Package Structure in
MeVisLab - Documentation

2

Package Structure in MeVisLab - Documentation

3

Table of Contents
1. Package Structure in MeVisLab .. 5

1.1. What is a Package? .. 5
1.2. How Does MeVisLab Find Packages? .. 6
1.3. Who "Knows" About Packages? ... 6

2. Package Components .. 7
2.1. The mevislab.prefs File .. 7
2.2. The Package.def File ... 7
2.3. Modules .. 7
2.4. Sources .. 8
2.5. TestCases ... 8
2.6. Projects .. 8
2.7. cmake ... 9
2.8. Configuration/Installer .. 9
2.9. Documentation .. 9
2.10. Lib/Bin ... 10
2.11. site-packages .. 10

4

List of Figures
1.1. Example for a Package Tree ... 5

5

Chapter 1. Package Structure in
MeVisLab
1.1. What is a Package?
A self-contained directory structure that consists of the following components:

• PackageGroup

• PackageName

• Package.def

• bin

• Configuration

• Documentation

• lib

• Modules

• Projects

• site-packages

• Sources

• TestCases

Figure 1.1. Example for a Package Tree

In this example, we have a PackageGroup named MyPackageGroup. Below it, two packages can be
found: General and Development. Below each package, the typical folders can be found as shown for
the General package. This example was generated with the Project Wizard in MeVisLab.

The folders Networks and ToolRunnerReports in the figure above are on the same level as the
PackageGroup.

A PackageGroup can contain any number of packages, and of course there can be different
PackageGroups.

The PackageIdentifier is defined by <PackageGroupName>/<PackageName>, e.g., the MeVisLab
Standard package has the identifier MeVisLab/Standard.

Package Structure in MeVisLab

6

1.2. How Does MeVisLab Find Packages?
MeVisLab searches in

• the packages directory in which MeVisLab was installed.

• the directories given in the PackagePaths settings of mevislab.prefs.

• the UserPackage path (as set in the MeVisLab Preferences dialog.

Scanning is always two levels deep, never deeper. If a package with the same PackageIdentifier is
found more than once, the last package found will overwrite the earlier packages (in the order given
above). This way, your packages given by mevislab.prefs file or your UserPackages can overwrite
installed packages.

Note

You can check your effective package structure with the tool ToolRunner.

To compile a running MeVisLab, the packages ThirdParty, Foundation, IDE, and Standard are
required. All other packages are optional and not required for a fully working MeVisLab installation
(except that you will not have all the nice modules from the other packages).

1.3. Who "Knows" About Packages?
Packages are supported in the complete tool chain

• CMake knows about the packages using the MeVisLab PackageScanner. It especially extends the
CMake modules path to the cmake directory found in any package.

• associated tools like ToolRunner know about packages.

• a MeVisLab module, accessible with ctx in scripting, knows its package:
ctx.package().packageIdentifier().

• MDL knows about packages using MLAB_PackageGroup_PackageName variables.

• MLABPackageManager provides package information to Python scripting.

• wizards use packages as their target.

• installers know about packages (SWITCH_PACKAGE, etc.).

7

Chapter 2. Package Components
2.1. The mevislab.prefs File
Settings {

 PackagePaths {

 pathRoot = MY_CHECKOUT_PATH

 path = FMEstable/Foundation

 path = FMEstable/General

 path = FMEstable/Release

 path = FMEwork/General

 //path = MeVisLab/Standard

 //path = MeVisLab/Foundation

 }

 ...

}

If you only need certain packages, enable/disable individual packages here by (un)commenting them.
MY_CHECKOUT_PATH has to be set to the root of the repository checkout (where the MeVisLab and
FMEwork/FMEstable directories are located).

2.2. The Package.def File
The file Package.def is part of every package. It defines the position of the package in the
PackageGroup.

A typical example (excerpt from the MeVisLab/Standard/Package.def):

Package {
 packageGroup = MeVisLab
 packageName = Standard

 owner = "MeVis Medical Solutions"
 description = "Standard MeVisLab Modules"
}

Note

In principle, the package structure is defined by Package.def. However, the implementation
of the package handling expects that all packages are below their PackageGroup.

2.3. Modules
The Modules directory of a package contains all files that MeVisLab needs to know at runtime (*.def,
*.script, *.mlab, *.py, etc.).

Shared Libraries (DLLs) are stored in a lib directory.

A typical sub-structure is

• ML

• Inventor

• Macros

Package Components

8

• Applications

• Resources

• Scripts

• Shared

• Wrappers

In the Scripts directory, there is typically a python directory where you can store shared Python code.
The import statements of a module's Python code searches in this directory for the Python module
to import.

You can also set additional Python import paths in your module's Commands-section in the .script file.

Commands {
 importPath = $(LOCAL)/Python/
 source = $(LOCAL)/MyModule.py
}

This sets an additional import path to a Python directory that is located relative to the module's definition.

You can have multiple importPath statements in the Commands-section.

2.4. Sources
The Sources directory of a package contains all source files that are used to build the shared libraries
or executables.

CMakeLists.txt files are used to specify DLL / executable projects.

Dependencies to other packages or projects are given in the MLAB_PACKAGE and CONFIG variables of
the profile.

A typical sub-structure is

• ML

• Inventor

• Shared

• Wrappers

2.5. TestCases
The TestCases directory contains the files for automatic tests that are executed with the
TestCaseManager. Please see the documentation for the TestCenter for how to define tests.

Usually there is a FunctionalTests directory in this directory, which in turn contains directories that
match the directories from the Modules directory. This is purely optional, though.

2.6. Projects
In the Projects directory, you can store self-contained projects for an easy moving of projects.
MeVisLab searches in this directory for projects in a depth of two, so there can be top-level directories
containing a number of actual projects directories, and/or just the actual projects directories.

Each projects directory contains a Modules, and optional Sources and TestCases directories (similar
to the top-level directory structure of a MeVisLab package). The structure of the Modules directory is

Package Components

9

similar to a directory of the top-level Modules directory, i.e., it can contain mhelp, networks, and Scripts
directories. It also contains the .def, .script, .mlab, and .py files of the module(s) that are defined
in a project.

Your project directory can contain the sub-directory Modules/Scripts/python, but to import Python
modules from this directory, you have to use a MeVisLab-specific virtual package: If you, e.g., want to
import the file Projects/MyProject/Modules/Scripts/python/MyPythonModule.py in your Python
code, you have to use the import statement

import mlab_projects.MyProject.MyPythonModule

i.e., you must prefix your import with mlab_projects.<project-directory-name>. For convenience
you probably would rather use

import mlab_projects.MyProject.MyPythonModule as MyPythonModule

This also allows to import Python modules/packages from other projects.

Note

Nowadays the use of the Projects directory is recommended over the old directory
structure where the files for a certain module were scattered over the top-level Modules,
Sources, and TestCases directories.

2.7. cmake
The cmake directory can contain <PackageGroup>_Settings.cmake and
<PackageGroup>_<PackageName>_Settings.cmake files that define (compiler) settings for C++
projects of the given project.

Note

These settings files don't need to reside in the package that they are intended for. You
just need to make sure that the package where they reside is always available when the
package for which they are applied is used.

You can also put files like <ProjectName>Config.cmake here, which are needed for findPackage()
calls in CMake files.

2.8. Configuration/Installer
The Configuration/Installer directory contains installer definition files (*.mlinstall and *.mli
files):

2.9. Documentation
The Documentation directory contains all package documentation, except for the individual module
documentation, which is part of the Modules folder. The documentation can be either in Doxygen or
DocBook format.

• /Documentation/Sources contains the sources for building documentation.

• /Documentation/Publish contains the result documentation (and is NOT checked into the
repository).

• /Documentation/Index allows to configure additional entries on the MeVisLab Help Page
dynamically.

http://www.doxygen.org
http://www.docbook.org

Package Components

10

• the *.mldoc file format facilitates configuring and building of Doxygen and DocBook documents.

2.10. Lib/Bin
The lib and bin directory of a package contain the shared libraries and executables.

• lib/ contains all shared libraries and static library files of the package.

• bin/ contains all executables.

Profiles in sources are set up to copy result files to lib/bin.

If a DLL cannot be overwritten, it is copied to the lib/updated subdirectory and is moved to lib/ on
the next MeVisLab startup. This way you can compile your project while MeVisLab is still running (which
would otherwise fail).

2.11. site-packages
The site-packages directory contains external Python packages that were installed with the PythonPip
module into a MeVisLab package. This directory – if it exists – is automatically added to the
PYTHONPATH.

http://www.doxygen.org
http://www.docbook.org

	Package Structure in MeVisLab - Documentation
	Table of Contents
	Chapter 1. Package Structure in MeVisLab
	1.1. What is a Package?
	1.2. How Does MeVisLab Find Packages?
	1.3. Who "Knows" About Packages?

	Chapter 2. Package Components
	2.1. The mevislab.prefs File
	2.2. The Package.def File
	2.3. Modules
	2.4. Sources
	2.5. TestCases
	2.6. Projects
	2.7. cmake
	2.8. Configuration/Installer
	2.9. Documentation
	2.10. Lib/Bin
	2.11. site-packages

